Comparative Genomics Analysis of a New Exiguobacterium Strain from Salar de Huasco Reveals a Repertoire of Stress-Related Genes and Arsenic Resistance

نویسندگان

  • Juan Castro-Severyn
  • Francisco Remonsellez
  • Sandro L. Valenzuela
  • Cesar Salinas
  • Jonathan Fortt
  • Pablo Aguilar
  • Coral Pardo-Esté
  • Cristina Dorador
  • Raquel Quatrini
  • Franck Molina
  • Daniel Aguayo
  • Eduardo Castro-Nallar
  • Claudia P. Saavedra
چکیده

The Atacama Desert hosts diverse ecosystems including salt flats and shallow Andean lakes. Several heavy metals are found in the Atacama Desert, and microorganisms growing in this environment show varying levels of resistance/tolerance to copper, tellurium, and arsenic, among others. Herein, we report the genome sequence and comparative genomic analysis of a new Exiguobacterium strain, sp. SH31, isolated from an altiplanic shallow athalassohaline lake. Exiguobacterium sp. SH31 belongs to the phylogenetic Group II and its closest relative is Exiguobacterium sp. S17, isolated from the Argentinian Altiplano (95% average nucleotide identity). Strain SH31 encodes a wide repertoire of proteins required for cadmium, copper, mercury, tellurium, chromium, and arsenic resistance. Of the 34 Exiguobacterium genomes that were inspected, only isolates SH31 and S17 encode the arsenic efflux pump Acr3. Strain SH31 was able to grow in up to 10 mM arsenite and 100 mM arsenate, indicating that it is arsenic resistant. Further, expression of the ars operon and acr3 was strongly induced in response to both toxics, suggesting that the arsenic efflux pump Acr3 mediates arsenic resistance in Exiguobacterium sp. SH31.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Draft genome sequence of Exiguobacterium aurantiacum strain PN47 isolate from saline ponds, known as “Salar del Huasco”, located in the Altiplano in the North of Chile

In this report, we present a draft genome of 2,886,173bp of an Exiguobacterium aurantiacum strain PN47 isolate from the sediment of a saline pond named "Salar del Huasco" in the Altiplano in the North of Chile. Strain PN47 encodes adaptive characteristics enabling survival in extreme environmental conditions of high heavy metal and salt concentrations and high alkalinity.

متن کامل

Comparative Functional Genomic Analysis Identifies Distinct and Overlapping Sets of Genes Required for Resistance to Monomethylarsonous Acid (MMA) and Arsenite (As) in Yeast

Arsenic is a human toxin and carcinogen commonly found as a contaminant in drinking water. Arsenite (As) is the most toxic inorganic form, but recent evidence indicates that the metabolite monomethylarsonous acid (MMA) is even more toxic. We have used a chemical genomics approach to identify the genes that modulate the cellular toxicity of MMA and As in the yeast Saccharomyces cerevisiae. Funct...

متن کامل

Cyanobacterial diversity in Salar de Huasco, a high altitude saline wetland in northern Chile: an example of geographical dispersion?

The diversity of Cyanobacteria in water and sediment samples from four representative sites of the Salar de Huasco was examined using denaturing gradient gel electrophoresis and analysis of clone libraries of 16S rRNA gene PCR products. Salar de Huasco is a high altitude (3800 m altitude) saline wetland located in the Chilean Altiplano. We analyzed samples from a tributary stream (H0) and three...

متن کامل

Comparative proteomics analysis of a novel g-radiation-resistant bacterium wild-type Bacillus megaterium strain WHO DQ973298 recovering from 5 KGy g-irradiation

In order to examine radiation-induced proteins in an extremely radio-resistant bacterium, it became possibleto perform comparative proteomic analysis on radio-resistance Bacillus megaterium WHO as a wildtypestrain for the first time. Variation in cellular proteins profiles of the Bacillus megaterium WHO after 5KGy γ-irradiation were analyzed by two-dimensional poly acryl amide...

متن کامل

Genome sequence and comparative genomic analysis of a clinically important strain CD11-4 of Janibacter melonis isolated from celiac disease patient

Background Janibacter melonis and other member of this genus are known to cause bacteremia and serious clinical comorbidities, but there is no study reporting about pathogenicity attributes of J. melonis. Janibacter terrae is known to cause lethal infection. Reporting the genome of J. melonis CD11-4 and comparative genomics with other members of genus has provided some novel insights that can e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017